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Abstract

This paper presents algorithms for routing channels with L > 2 layers; we
not only present substantial new results, but we provide a unificd framework
in which many previously known results can be obtained. For the unit-
vertical-overlap model, we describe a 2-layer channel routing algorithm which
uses at most d + 0(Yd) tracks to route two-point net problems and

2d + 0(¥d) tracks to route multipoint nets. In addition, we show that

d + Qlog d) tracks is a lower bound on channel width for 2-layer routing
alloving even arbitrary length overlap. Moreover, our algorithm can also be
used to obtain the ':nown bounds for the Manhattan and knock-knee models. We
generalize the algorithm to unrestricted multilayer routing and use only

d/(L - 1) + O[/(d/L)] tracks for two-point nets (within O[/(d/L)] tracks of
optimal) and d/(L - 2) + 0(v¥d) tracks for multipoint net problems (within a
factor of (L - 1)/(L - 2) times optimal).
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Abstract. This paper presents algorithms for routing channels with L 22 layers; we
not only present substantial new results, but we provide a unified framework in which
many previously known results can be obtained. For the unit-vertical-ove{I/m model.,
we describe a 2-layer channel routing algorith\r})_;vhich uses at most d+ O( VY d) tracks
to route two-point net problems and 2d+ O(V d) tracks to route multipoint nets. [n
addition, we show that d+ Q(log d) tracks is a lower bound on channel width for for
2-layer routing allowing even arbitrary length overlap. Moreover, our algorithm can
also be used to obtain the known bounds for the Manhattan and knock-knee models.
We generalize the algorithin to unrestricted multilaycr routing and use ouly

+ O(\/m) tracks for two-point nets {(within O(\/m) tracks of optimal) and
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1. Introduction.

Chanuoel routing plays a crucial role in the development of automated layout systems for
T ., .

integrated circuits,{sée, -e.g., [HS71],[R82])}. Most layout systems first place modules on a chip

and then wire together terminals on different modules that should be electrically connected. This

wiring problem is often solved by heuristically partitioning the given space into rectangular chan-

nels and then assigning to each such channel a set of wires which are to pass through it. This

. . N v
solution reduces a zglobal” wiring problem to a set of disjoint (and hopefully easier) "local” chan-

pel routing subproblems, For this reason, the chanuel routing problem has been intensively stu-
died for over a decade, and numerous heuristics and approximation algorithms have been pro-

posed ([BBL&4]. [BraBr85], [D76], [PL&84], [RBM81], [RF82], [YK82]).
A

— The generic form of the channel routing problem may be described as follows. The channel
consists of a rectilinear grid of tracks (or rows) and columns. Along the top and bottom tracks
are numbers called terminals, and terminals with the same number form a net. A net with r ter-
mioals is called an r-point net. The smallest net is a 2-point net; if r >2, we have a multipomt
pet. The channel routing problem is to connect all the terminals in each net using horizontal and
vertical wires which are routed along the underlying rectilinear grid. The goal is to complete the

wiring using the minimum number of tracks; i.e., to minimize the width of the channel.

A variety of models have been proposed for channel routing, with differences depending on
the number of layers allowed and on the ways in which wires are allowed to interact. The sim-
plest is river routing, in which only one layer of interconnect is available. Unfortunately. only
planar problems are routable, and even a simple routable problem (like an .V net shift-left-by-1)

may require N tracks to river route.

Two-layer models are relevant to practice, however, and have been extensively studied. The
most common 2-layer model is the traditional Manhattan routing model. In the Manhattan
model, horizontal wire segments are routed in one layer and vertical wire segments are routed in

the other layer. Hence, wires can cross but cannot overlap (i.e., run on top of one another) for
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any distance. Note that when a wire changes direction, it must also change layers, which requires
a contact cut at the corresponding grid point. Where a contact cut is used, no other electrically

disjoint wire can pass through that grid point in either layer.

Unfortunately, channel routing is NP-complete for many interesting routing models, includ-

ing Manhattan routing and even for the special case of 2-point nets ({Sz85],{SY82]). Fortunately,
however, a linear time approximation algorithm is known for Manhattan routing {[BBL84] and the
bounds obtained for channel width are based on the notions of denssty, d, and fluz, /. The density
of any channel routing problem is the maximum pumber of distinct nets crossing {or touching)
any vertical cut of the channel. It is not difficult to see that the density of a problem is a lower
bound on its channel width in the Manhattan model. A channel has flux fif fis the largest
integer for which some horizontal cut spanning 2f° columns splits at least 2f>= f nets. (The flux
definition assumes no trivial nets, i.e., no 2-point nets with both terminals in the same column).
Flux. like density, is a lower bound on channel width ([BBL84], [BR81}) and although the flux can
be as large as VN for an N-net problem (e.g., the shift-left-by-1), it is often much smaller in
practice. In [BBL81], Baker, Bhatt and Leighton devised an algorithm to route any Manhattan
problem with density d and flux fin a channel of width 2d+ O(f). For 2-point pets, the upper

bound is d+ O( [).

The knork-knee model proposed by Rivest, Baratz, and Miller [RBM&1] also uses two layers
but does not constrain vertical wires to be routed in a different layer than horizontal wires.
Hence, wires are allowed to share corners (e.g., a wire can bend on the top layer directly above a
wire beuding on the lower layer), but they are still not allowed to overlap. Density again serves
as a lower bound on channel width in the knock-knee model. Flux does not play a role, however,
and every 2-point net knock-knee problem can be routed using 2d—1 tracks [RBM&1], [BoB3r&2
(td=1 tracks are sufficient for multipoint net problems). Somewhat surprisingly, 2d—1 is actu-

ally optimal in the worst case; this lower bound was demonstrated by Leighton [L81] when he

discovered a class of 2-point net problems which require 2d~ 1 tracks for any d.
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The question remained, however, whether a better algorithm could be found if a less restric-
tive (but still electrically sound) model were allowed. In the first part of this paper, we answer
this question afirmatively by describing an algorithm that routes any 2-point net problem with
density d using only d+ O(\/I) tracks. For multipoiot net problems, the upper bound is
2d+ O(\/I). The model used is an extensidn of the knock-knee model, in which wires are allowed
to overlap for unit segments in the vertical direction. We call this the unst-vertical-overlap

model.

Density is. of course. an obvious lower bound on channel width in this unit-vertical-overlap
model. In addition, we present an improved lower bound for 2 layer routing. We show that some
CRPs require d + Q(log d) tracks even when vertical overlap of arbitrary length is allowed. This
is significant in that it shows that optimal routing algorithms must use d + O(g) tracks, where ¢

is some sublinear function of d.

Although we have saved only a factor of two in channel width, and even then only at the
expense of weakening the model, the result is significant for several reasons. First, it is the last
factor of two that can be gained; we are approaching the lower bound. Second, the factor of two
is very important iu practice and we are approaching algorithms that could be useful in practice.
Third. the result shows that some routing problems become easier when unit-vertical-overlap is
allowed. Since such overlap may be allowable in practice, the result may lead to innovations in
practical routing algorithms. Fourth, and possibly most important, our algorithm presents a
unified framework which can also be used to duplicate the Baker-Bhatt-Leighton results for
Manhattan routing and the Rivest-Baratz-Miller results for knock-knee routing. This is some-
what surprising since the algorithms used to obtain these results were very different and highly
model dependent. (Actually, our algorithm can be roughly described as a simplification and sub-
stantial generalization of the Baker-Bhatt-Leighton algorithm.) It is important to identify algo-
rithms that are tolerant to variations in model restrictions, since real-world chanoel routing prob-

lems often differ from the corresponding mathematical abstractions. Hence, algorithms that are
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tolerant to model changes are more likely to be reducible to practice in the long run.

In the second part of this paper, we describe the extension of our algorithms to multilayer
channel routing.‘ Recent advances in fabrication technology have increased the importance of
multilayer channel routing. The initial theoretical work in this area is due to Preparata and
Lipski [PL84] who defined the 3-layer kno;.k-knee {nodel and discovered an efficient algorithm for
routing any 2-point net problem in the optimal number of d tracks. For routing multipoint nets

tn this knock-knee 3-layer model, the best known algorithm uses 2d—1 tracks [SP85].

Some recent results have been obtained for routing with L layers, L23. Hambrusch in [H&3]

d

gave an algorithm which routes 2-point nets using + 3 tracks for L =25 with arbitrary

2 . . . ~
overlap: =d and -}d results are obtained for L =3 and L =4, respectively. Subsequently, Brady
and Brown [BraBr&5] used arbitrary overlap to route any multipoint net problem using at most

4+ . —- - . . .
I—d——'-] +5 tracks for L 27 (inferior results are obtained for smaller L values). For a different
9

model, in which wires are allowed to overlap, but not on adjacent layers, their algorithm uses 4t

most 2 Li+13 tracks. within three tracks of optimal.

Extending Leighton's lower bound of d for L=2 [L81], Hambrusch showed that ut least

4 . : : R
[[ l tracks are required to route apy chaonel routing problem with L layers, even if wires are

allowed to overlap (H83]. In this paper we generalize our 2-layer algorithm in order to route any

2-point met problem using + O(VH) tracks and using + O(\/d/L) to route any

L-1 L=2

multipoint net problem. Notice that these results are very close io optimal in the worst case:

withio O(\/d/L ) tracks for 2-point nets and within a multiplicative factor of i_;

times optimal

for multipoint nets. Both algorithms give notable improvements over previous results, and they

i S e T R Rt .
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come very close to the inherent limits imposed by the problem.

The remainder of this paper is divided into sections as follows. In Section 2, we lay the
groundwork for the 2-layer unit-vertical-overlap algorithm, describing some of the basic ideas and
showing how to replicate the known results for Manhattan routing and knock-knee routing. Sec-

tion 3 contains the unit-vertical-overlap algorithm. In Section 4 we present improved lower

bounds for overlap routing. We generalize the algorithm to multiple layers in Section 5. For sim-
P g g g P Y
plicity, we restrict our attention to 2-point net problems in Sections 2—35; multipoint net results

are discussed in Section 8. We conclude in Section 7 with some remarks and open questions.

For brevity in this extended abstract, we have omitted much of the technical material from
sections 2—6: the interested reader may refer to the Appendix and the attached figures in order

to provide insight into the operation of the algorithms.

2. General Strategy.

The general strategy in all of our algorithms will be to partition the channel into blocis of r
consecutive columns. The algorithms then proceed in two phases. The first phase uses tracks in
the middle section of the channel to route each net from the block in which it begins to the block
in which it ends. At the end of Phase 1, all that remains is to route the nets within each block
into their correct columns; Phase 2 does this using the top and bettom sections of the channel

(see Figure 1).

Phase 1 is the core of the routing strategy. It proceeds a block at a time from left to right.
Nets are dilferentiated into three types. A verfical net has both of its terminals in the same
block. Among nets having terminals in diferent blocks, a falling net has its rightmost terminal on
the bottom of the channel, while a rising net has its rightmost termin.! on top. These defir.itionx
cover both top-to-bottom and same-side nets. While our description of the algorithms is limited

to top-to-bottom nets, same-side nets are a trivial extension, and our algorithms hold for bLoth

o
Vs

types of 2-point nets. A rissng/falling strategy is employed: falling (rising) nets are packed into

W
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the lowest (highest) tracks available for horizontal routing. The empty tracks between the rising

and falling nets are reserved to route blocked entering nets by backtracking to the left through a

pyramid.

The choice of r, the block size. is dependent on the routing model. For 2-layer Manhattan

routing [BBL84], use a block size r= O(f) to obtain a d + O(f) algorithm for 2-terminal nets. For
the 2-layer knock-knee model, we can take r=1, and eliminate Phase 2 altogether. The resulting
algorithm requires 2d—1 tracks: d tracks for horizontal routing, each separated by an empty

track to be used solely for layer changes. Thus. the knock-knee version reproduces the results of

[RBM&1]. [BoBr82].

3. Routing in the (2-Layer) Unit-Vertical-Overlap Model.

For the unit-vertical overlap model, we choose the block size proportional to V4. Iloter-

block routing is divided into Phases 1.1 and 1.2. Phase 1.1 routes nets between blocks in « €3

manner very similar to the Manhattan interblock routing procedure [BBL84]. We form disjoint L
ending net, continuing net, and begiuning net staircase patterns, but these patterns are separated
vertically in this algorithm by empty tracks, rather than horizontally, as in [BBL84]. As a result.
we do not need the additional columns which led to the flux term in [BBL84], but we do need
additional tracks. In fact, it is assumed that upon cntering a block, five empty good tracks. Gi -
G5, have been placed among d Manhattan routing tracks, in the precise positions to vertically

separate the staircases. These d+5 tracks are called primary tracks, and are used to route the

nets between blocks in Phase 1.1.

Some of the details of Phase 1.1 may be found in Section 1 of the Appendix, and illustrated
in Figure 2. ['base 1.1 assumes that five good tracks have been placed in the correct positions
upon entering the current block. Phase 1.2 guarantees this invariant by positioning five empty
ertra tracks for use in the next block as good tracks. These five tracks are actually the bad

tracks created in the previous block. To accomplish this, 5 [M] additional empty reserired
r
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tracks are evenly spaced in the channel at intervals of y=r/5 tracks. An extra track is moved to
any desired location by a series of one unit vertical jogs, as in Figure 3. The reserved tracks
break up the horizontal propagation so that at most y columns are required to movz any distance.
Thus, a total of 5y=r columns is sufficient to propagate all five extra tracks. The one unit verti-

cal jogs are done in the horizontal layer, so they do not interfere with Phase 1.1, except to cause

one unit vertical overlaps.

Lemma 1: Phase 1 requires at most (d+5) + -S—Li':—lg)-+5 tracks.

Since Phase 1 has routed all nets to the correct blocks, the densities of the top and bottom
sections of the channel are each bounded by r. For Phase 2 apply, for instance, a no-overlap.
knock-knee algorithm {{[RBM81], [BoBr82]) which routes a channel in 2d—1 tracks. Thus, the top

and bottom sections can each be routed using 2r—1 tracks.

Lemma 2: Phase 2 requires at most 4r — 2 tracks.

Phases 1 and 2 together route any two terminal net channel routing protlem. By Lemmas !

and 2 we know that we have used t =(d+35)+ 3(d+10 +5+ (4r—2) tracks. Choosing r in order
r
to minimize {, we see that our algogithm uses t = d + 4\/5(d+ 10) + 8 tracks.

Theorem 1: Any two terminal net channel can be routed in two layers using d + O(\/d)

tracks, allowing unit-vertical-overlap.

4. Lower Bound.

Our unit-vertical-overlap algorithm is still 0(\/7) tracks over the obvious lower bound.
However, in this section we give a better lower bound of d + Q(log d) tracks which holds even if
vertical overlaps of arbitrary length are allowed. Technical details of the proof may be found in
Section 2 of the Appendix. Define a CRP consisting of four copsecutive sets of d columus each,
such that the d upper terminals of set s connect to the d lower terminals of set i+ 1, fort s i< 3

(see Figure 4). The actual permutation of lower terminal connections within each set is not
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specified. Notice that all of the nets are falling, and the density in columns d+ ! through 34 i~

precisely d. We assume that d+ A tracks are available for routing.

We wish to consider only the routing within the middle two sets of the CRP. We refer to
this 2d column subproblem as the restricted region. We can show that within this region. only
O(N\N-d) empty unit vertical segments may"exist. Since the density is d throughout the region. at
most K tracks are empty at any column as well. T'his ;neans:hat large regions ex.st in which no
horizontal or vertical segment is empty. Routed is very restricted in such regions. and so we are
able to bound the number of possible different routings within the restricted region: Only 27~
different choices are possible. But at least d! different routings are required in the restricted

region, corresponding to the d! different permutations of the nets being routed from the upper left

to lower right. This gives 20K d) = ¢! and thus i\ = Q(log d).
Theorem 2. The optimal solution to some CRPs of density d requires d + Q{log d) tracks.

This lower bound proof counts only the number of different routings possible in a given arcu.
We may be grossly overestimating the number of different problems that can be routed. since
there are many different ways in which to route a single problem. Also. the problem we con-
sidered 1s not at all complex. It contains only 4d nets, all of them falling. Thus, it seems feasibte
that the lower bound could be further improved using a different strategy. We suspect that in

the worst case, d + ﬂ(\/;) tracks may actually be required.

5. General Algorithm for L Layers.

We can extend Section 3's tw> layer unit-vertical-overlap routing algorithm 10 order to han-
dle multilayer channel routing, in which arbitrary overlap is allowed tn an L-layer channel. In
our L layer algorithm, each Manhattan routing track contains up to L —~ 1 different nets, in lavers
2 through L. Layer 1 is reserved for vertical connections. Now, both a track and a layer (2

through L) are required to uniquely specify a net’s horizoatal position: each track is said to con-

sist of L. —1 lanes.
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Five primary good/bad tracks are still required in order to separate staircase patterns, but

now we differentiate between two types of good/bad tracks. An empty good/bad track contains
no nets at all in any of its L —1 lanes, while a partial good/bad track contains nets in layers 3
through L {only layer 2 is empty). It is assumed that any net which exits in a given block B will
e in laver 2 upon entering the block. To insure this, nets which exi- in block B are swapped into
layver 2 in block B—1. during Phase 1.2. In additi;)n, Phase 7.2 is still used to move five empty

tracks into good positions for the next block.

Notice that if two nets in the same track both exit in the same block. both may not be
swapped into layer; 2. Further, a net which exits in B may not be swapped into layer 2 in B—1
{to exit in B)if ancther net in its track exits in block -1, and therefore is already using layer 2.
To avoid these conflicts, we want to insure that at most one of the L —1 nets in any given pri-
mary track exits in any pair of consecutive blocks. To achieve this, group the blocks into sets of
201 = 1) consecutive blocks. We only require that a net be routed into the correct set of blocks in
Phase 1.1. An additional step. Phase 1.0, is added to reorder the nets between blocks and to

insiure that two nets never exit from the same track in the same or adjacent blocks.

The Appendix provides some details of the Phase 1 routing, which uses at most

; d l + {)[11{ ] tracks. Since the nets have been routed to within the correct set of 2(L —1)
. T

bloehsin Phase 1. Thus, the top and bottom sections each have density at most 2(L —1)r. Phase

—d
[L2]-1

3

2 rmployvs the simple overlap routing algorithm of [BraBr85] which uses tracks, and so

Phase 2 of our L layer algorithm uses at most O(r) tracks. Phases 1 and 2 together route an L

lnver channel in a total of j + O[Lir] + O(r) tracks, according to Lemmas 4 and 5. The

block «ize r. cho<en to minimize this quantity, is r= O(\/d/L)‘ This implies the following

theorem.
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Theorem 3: Any two terminal net channel can be routed tn the L layer arbitrary overlup

+ O(VH) tracks.

model using -1

8. Multipoint Nets.

Both the two-layver and the general algorithms can be extended to handle multitermii il ners
For the unit-vertical-overlap model, the strategy is to create two horizontal wires for each enrer-
ing multiterminal pet, one in the rising and one 10 the falling <ide of the channel. The net's ful-

ling (rising) portion ends when the rightmost block containing a lower (upper) terminal of thas

net is reached. This potentially doubles the pumber of Manhattan routing tracks required

Theorem §: Any multipoint channel routing problem can be routed in the {2-laver) unit-

vertical-overlap model using 2d + ()(\/d) tracks.
This same strategy applied to L layer routing would use 2d horizontal routing lanes and thus

R —
lead to a L—"d—l + ()(\/d/L ) track algorithm. But this is inferior to even the simplest multiter-

minal net routing algorithm of BraBr25]. However. if we allow two layers. | and [. for verticul

routing. then we eliminate vertical constraints and can route with only 4 horizontal routing lanes

Theorem 5: Any multipoint channel routing problem can be routed in the L layer (L. 27)

+ O(Vd/L ) tracks.

arbitrary overap model using

-2

7. Remarks and Open Questions.

The work prescated here has <erved to tie together many of the theoretical channel routing
results and has resolved a number of open issues. There are two ceutral questions left open by
this work. First.is the additive O(Vd) term necessary’ \We suspect that it is, in the worst ease.

even for the least restrictive 2-laver model.

Second, do multipoint net problems really require larger channel widiths than 2-point net |

problems? Recall that very little progress had heretofore been wade on this issue. For almost all
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models studied. the best known algorithms have 1n the worst case used roughly a factor of twa
tmes 1s many trachs for multipoint as for 2-point nets (ponadjacent overlap models being the

notable exceptions) \We have at least shown that this barrier breaks down for L >?

The algorithms presented 10 this paper are all based on the same ideas and therefore give a
unified framework 1o which to obtain b0t'x'nds for various routing models: Manhattan., koock-
hoee 2 laver umit-vertical-overiap, multilayer routing with arbitrary overlap Thus. we can hope
that an improvement of a bound for any of these models might well generalize to the others \We

hope 1o the near future to extend the universality of our method to also iaclude known 3-laver

results  [n wddition, we expect to be able to improve the coastants 1o our algorithmic bounds

8. Acknowledgements and Related Independent Work.

The umit-vertical-overlap model was first defined in unpublished work of Leighton and
Pinter in the summer of 1933 at Bell Labs. At the time, Leighton and Pinter ¢claimed (but did oot

publish) a 4+ O(4- ") bound on channel width for 2-point net problems (and twice that for mul-

tipoint nets) {Also in unpublislied work. Brown had 10 1982 independently proved a ;—d bound

. . . 3
for 2-point net problems. using a less demanding 2-layer model.) Subsequently. Gao proved a —1

-

upper bound for 2-point net probiems using the unit-vertical-overlap model. This was later
improved to 4+ O(d-?) by Hambrusch in 1985, rediscovering the original bound of Leighton and
Pinter. The Hambrusch and Gao work has been combined to form [GI1{35]. The original works of
Leighton. Pinter, and Brown have never appeared and are subsumed by this extended abstract
[t is quite possible that Ron Pinter will become a coauthor of this paper, reflecting his fundamen-
tal contributions to our early results. In any case, we arc indebted to him for valuable ideas and

discussions.
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. APPENDIX
“
o
Some Technical Details Y
‘
1. Phase 1.1 for the 2-Layer Unit-Vertical-Overlap Model.
-
Phase 1.1 consists of the following six steps. We refer the reader to the example - :
worked through in Figure 2. p
Step 1: Nets having their rightmost terminal in the current block B (and the other 5
terminal not in B) are called ending nets. Ending falling (rising) nets exit in the left-
most columns, ordered [rom the highest to lowest (lowest to highest) (Figure 2a). "9
i
Step 2: Nets having onc terminal in a block to the left of B and the other in a block
to the right of B are called continuing nets. Tracks vacated in Step 1 are filled in 5
using the highest falling (lowest rising) continuiug nets, using G5 (G1) to separate .
the staircase patterns (Figure 2a). Each gocd track used results in an empty track .
at the right of the block, called a bad track. BS in Figure 2a is the bad track o
corresponding to G5. v
‘ Step 3: If there are more ending rising (falling) nets than ending falling (rising) nets. :
balance the difference by routing starting rising (falling) nets (i.e., nets with their '.
leftmost terminal in B). Then, expand the pyramid into the vacated tracks. Notice A
that two more good tracks, G2 and G4, are used in this step (Figure 2b). .
-
Step 4: If the remaining number of starting falling nets is greater than (less than) z
the number of starting rising nets, route the starting falling (rising) nets directly, as K
in Figure 2c. n
Step 5: Route the remaining starting rising (falling) nets through the pyramid, N
separated from the starting falling (rising) nets by G3 (Figure 2¢). Con
Step 6: Conclude the routing of block B by routing all vertical nets trivially across =1
the channel. <
2. 2-Layer Lower Bound. -
We discuss here some details of the lower bound proof within the restricted region. -_,
>
Consider a horizontal (vertical) cut between two tracks (columns). A pet with a terminal ::T
on either side of the cut must use one or more unit-vertical (horizontal) segments to cross A
the cut. The first segment used, traveling downward from upper to lower termiunals is -
called an snistial crossing. Our counting argument hinges on initial crossings; unit Bt
D

AN el Gt B L



14

segments containing non-ikitial crossings are treated just as unused, or empty segments.

We make the following observations about routing within this region:

There are at most K unit-vertical-overlaps in which both wires are initial crossings in
any column. This is because each unit overlap causes an empty track on either side
of the column.

Exactly d horizontal segments-per column contain initial horizontal crossings, since
the density is d at all columns.

At most O(K-d) vertical segments may fail to contain an initial crossing. The set 1
+ L .
and set 3 nets each cause at least 1+2+3+ .. - +d= -(-d—z—l-M- initial crossings. At

most I\ set 2 nets can leave the restricted region. so they add at least (d—= N )(d+ I')
initial crossings, and from Observation I, only 2dA’ initial crossings can share a single
vertical segment.

Our initial strategy is to bound the number of different choices allowed for routing s
single column. Initially, the order in which set 1 nets enter the leftmost column will be
decided by the choice of routings made within the restricted region, so that the correct
connections are made to the lower left terminals.

There are 2904 K) ways to divide the O(d-K) empty vertical segments between the 2d

2d
columns. Define each column § to have k, empty segments, such that 3 k, = O(d-K)

=1

The column can be divided into A'+1 groups of consecutive initial horizontal crossing-.

separated by A empty horizontal segments. Routing within a group is restricted in the
following sense. The highest net which turns downward determines all routing below it in
a group. This claim is illustrated by the examples in Figure 5. Further, all verticul «.g-
ments in the group above the highest downward turning net obviously contain no verticul
tnitial crossings. But since there are at most k, "empty” vertical segmeants, the highest
dropping net must have been within k&, tracks of the top of the group. There are 0(2"72‘ )
ways to divide the k, empty segments between the A'+1 groups. This done, there remuin
only O(k,) tracks whose routing is not yet determined, and so in all, the number of posi-

ble routings for column s is bounded by O+ K
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- Now consider the entire region of 2d columns. The maximum number of different
th
24 Ok +K) . d !
routings for the entire region is [J2 = 20(Kd) since Y k,<2Kd. But we must be 0
1= =1
;
able to route at least d! different problems in the region, corresponding to d! different per- ‘e
d)* 2
mutations for the nets of set 2. Thus, 20(Kd) = 4t > [—] , and so A" = f)(log d). . :
B 4 S
‘.-
o’
<+
3. L Layer Algorithm.
-
Phase 1.0 uses a greedy strategy to reorder nets in each set of 2(L —1) blocks. Nets o
~
..
A
are selected for a given block just before it is to be routed. An exiting net in track tis a N
“
feasible selection for block B if no other nct in ¢t has been selected to exit in Bor B—1. i
From the feasible set, simply select a net from the track containing the most nets which .-
-
exit in this set. Then update the feasible set, and repeat until no further additions to the e
9
. current block are possible. The remaining terminals are filled by starting and vertical e
nets, in any order. o
Phase 1.1 is organized just as in the unit-vertical-overlap algorithm into six steps. -
A
Phase 1.1 routing for L layers is illustrated in Figure 8. There are now two types of inter- N
locking staircases. Ending nets exit only from layer 2, aud so G1 and G5 need not be com- '\‘_‘
~
pletely empty. Gl and G5 are partsal good tracks, having only layer 2 unoccupied. On \-
Y
the other hand, good tracks must be completely empty when continuing nets are used to
fill in the vacated lanes, so that falling (rising) nets remain packed into the bottommost -
(topmost) primary tracks. The pyramid is formed in all L =1 horizontal layers as well, so Co
G2, G3, and G4, called empty good tracks, are completely empty in order to separate all n
L =1 lanes of the corresponding staircases. .,
Phase 1.2 has two purposes in the L layer algorithm. First, the five extra tracks are s
moved into good track positions for the next block. Second, all nets which exit in the next N
LY
” block are swapped into layer 2. The reserved tracks are evenly spaced y=r/8 tracks apart N
Ky
)
Y
3
- ~1
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in order to achieve both of these requirements.

The first 5y columns of the block are used to move five extra tracks (two partial.
three empty) into good track positions for the next block, exactly as in the previous algo-
rithm. The remaining 3y columns are used to swap exiting nets into layer 2. This is done
by propagating another empty extr;.track through the entire width of the channel. Any

track containing a net to be swapped into layer 2 will be jogged and swapped using three

columns, as shown in Figure 7.

Block Block o « o

: 1 2
O(Vd) Top Section Phase 2
: d+ 0(Vd) Middle Section Phase I
O(\/.d) Bottom Section Phase 2 :
r r

Figure 1. The two phase partition of the unit-vertical-overlap algorithm.
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Figure 2. Maaghattan interblock routing procedure. oy
>
(a) Exit all ending nets. _:_

Repack rising/falling structure with continuing nets.
(b) Expand the backtracking pyramid. -

o Balance excess exiting nets using entering nets. iy
«”, ) N
(¢) Route the starting nets. .
..:
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Figure 3. Propagating an extra track El to a next block good position G1.
reserved track .
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Figure 4. CRP for lower bound argument
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Figure 8. Manhattan interblock routing in L layers.

(a) Exit all ending nets (from Iaver 2).
Repack rising/falling structure with continuing nets (layers 2 through L).

(b) Expand the backtracking prvamid.
Balance excess exiting nets using entering nets (not pictured).

- (c) Route the starting nets, in L -1 layers of the pyramid.
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